Categories
.net C# Uncategorised

Why I completely switched to VS Code

…also for C#/.NET development…

image by author

Foreword

First I have to say that I like Visual Studio very much. It is a good working IDE for development .NET stuff. I used it for over ten years now for mobile, desktop and web development. Yes of course sometimes visual studio can a bit annoying because of it’s performance and “magic” behind the scenes. But at least it is a good Program…

However some weeks ago I needed to reinstall windows and began installing all the required programs which I needed. Then I stopped after installing VS Code and said to myself: “Hm my msdn professional abo has been ended and the next Visual Studio Version (2020) will cost me some money. Let’s try rider? Hm no – before I want give VS Code a real try!” This is because I use VS Code a lot for all my other developments like angular, go, flutter, etc. and I know this should work with .NET.

So my first expectation was that I get some syntax coloring and all the compiling, tests, etc. will be running in terminal, or have to be done in a not so common way.

My Experience

So I knew that I can use also VS Code, but I always thought, that I have to dispense a lot of features. Most of the devs I know work with Rider or Visual Studio Professional/Enterprise, because they thought the same like me. But I was totally surprised that it worked so well. Until now I miss nothing really. It’s quite the opposite. I am enjoying the fast editor and the customizing for the individual needs without manipulating the source of the project.

I started by installing the “C# (powered by OmniSharp)” plugin. That plugin provides syntax highlighting, reference recognition, debugging, etc. I tried this on an existing solution (The root folder where the solution is located needs to be opened). If you want to work with full support by C# plugin you have to work with solution files. When you want to debug your project for the first time, you have to set a launch file. Here you can specify the startproject etc. With this installed you can debug your code, set breakpoints, view variables, add watch expressions and modify the code (like in the immediate window in Visual Studio) within “Debug Console” window.

By the “Visual Studio IntelliCode” plugin you get the same AI intelli sense experience like in Visual Studio. And to get a more powerful importing namespace experience use the “Auto-Using for C#” plugin. It provides importing when typing knowing types. And for a better overview you can install the “vscode-icons”.

If you need a kind of “gui” for the nuget packages you can install the “NuGet Package Manager” plugin, but of course you can also use the dotnet cli for it.

Then I thought ok that is really cool but what is with unit tests. Can I run tests inside VS Code or do I have to use the cli? And the answer is – yes it is very easy possible. So you need first the “TestExplorer UI” and then the “.NET Core Test Explorer” plugin. After installing these you have a new icon on the left which opens the test explorer. You might have to edit the settings to specify on which locations the plugin should be search for unit tests. And then you can go with it.

For creating new solutions or adding projects to the existing solution you have to use the dotnet cli. I thought – but while I wrote this, I have done a quick research and I came to the “vscode-solution-explorer”. With this installed you have the same experience like in Visual Studio. On the left side (activity bar) you have an additional Visual Studio icon. By pressing it you have the same view like in Visual Studio. You can create projects add existing projects, view all references, add nuget packages, etc.

There are thousands of plugins how you can optimize your dev environment for your needs. So but I am happy with the plugins I have addressed here.

Plugin List

  • C# OmniSharp
  • Test Explorer UI
  • .NET Core Test Explorer
  • Auto-Using for C#
  • NuGet Package Manager
  • vscode-solution-explorer
  • Visual Studio IntelliCode

There are so many more useful C# helper plugins, for code generating etc. But to get started very comfortable this is my recommendation.

Missing

May be there are some tools which you will not get. For profiling, code quality and that stuff I use other tools in anyway which are then part of the pipeline… I really found nothing which I would miss.

Conclusion

So if I work on projects which runs on .NET Core or 5 then I will definitely choose VS Code for now. It feels good to work with. I do not get it why some guys say that VS Code is not so much powerful etc. I tried it and I think I will not install Visual Studio again, except to that point when I have to change some old webforms code :).

Refactoring, debugging, testing and writing the code feels very great to me and the setup was very easy. May be the entry is a little more difficult for new unexperienced users, but I think in Visual Studio you have to know what you are doing to! So give it a try and tell me your thoughts of your experience!

Categories
.net architecture C#

Skeleton for Vertical Layered Web API in .NET CORE

image by Vecteezy.com

…with fluent validation and automapping…

Today I just want to share a basic skeleton web api written in .net core. This is a kind of basic set up which works fine for microservices as well as some bigger ones. So I am a very big fan of not only horizontal layering ( see post Horizontal and Vertical Layers in Software Development). The example also shows how an application layer validation could e applied and how to easily map the items through the layers. So may be this helps the one or the other…

First the link to the source: layered-net-core-app

Some Description

So this skeleton app shows how an application could be split into vertical layers. This has multiple advantages (again see Horizontal and Vertical Layers in Software Development). Furthermore it shows with one example the flow of the data and connections from top (controller/application layer) to bottom (data layer). The data layer is only pseudo code and does not persist stuff, to focus on the layering and communication stuff.

The application has three layers:

  • Application Layer
  • Business Layer
  • Data Layer

…and several projects:

  • WebApi (Contains startup, adding middleware, setups, controller routings, forming the output and at least hosting the application)
  • WebApi.Configuration (DI bootstrapping / connecting the layers together)
  • WebApi.Common (Common stuff for the web api)
  • Application (The implementation of the application layer)
  • Application.Contract (The access to the application layer from outside the application layer)
  • Business (The implementation of the business layer)
  • Business.Contract (The access to the business layer from outside the business layer)
  • DataLayer (The implementation of the data layer)
  • DataLayer.Contract (The access to the data layer from outside the data layer)

Application Layer

The application layer is used here in this example by the web api project (Controllers). But the Controllers has only access to the application layer contracts. This allows us to avoid unwanted direct connection to use the implementation directly or to access business entities which knows the application layer implementation, but should not possible to expose by the api to the “outer world”. The application layer implementation knows only about the business layer contracts to communicate with it.

What this layer will does depends on the call and the needs for it. But from my perspective it is responsible for providing services for getting data from business/domain side and/or triggers domain/business logic. Furthermore it orchestrate all this needed calls to business logic and for example third party services to get/set the wanted result.

Business Layer

The business layer knows only about the data layers contracts. The business lay exposes only interfaces to use the layer and the business entities.

This layer should contain all the business/domain logic. All business relevant calculations and manipulations should occur here. No manipulation of business entities should be done outside of this layer.

Data Layer

The data layer knows only about the database or storage where all the data is persisted. The contracts from the data layer should only be used from the business logic to make sure that persisting data follows the rules inside the business layer. It is the connection to database and or storage. If provides repositories to store and get items from the database/storge.

Comments

This splitting is for the most services to much, but it demonstrates very well how the layer can securely communicate to each other. This pattern fits best for situations where no object relation mapper is used, because in entity framework the business entities are the tables in the data layer. So this layer is mostly a little overdone.

Personal I think a layering in microservices for an application layer and domain layer (where all the domain logic and data storage is handled ) is the best compromise to securely work with domain logic and have not total overhead of bubbling through thousands of layers. But this depends like every time on the needs of the application.

Categories
.net architecture azure C#

PART 2: WEB API – Building a Scalable App Environment with Infrastructure and Deployment

Using .NET, Angular, Kubernetes, Azure/Devops, Terraform, Eventhubs and other Azure resources.
Image for post
image by author

This is one part of a series. So if you have not read the PART 0: OVERVIEW you can go there and read it to get an overview of what we will actually doing here …

Introduction

In the last PART 1.1: INFRASTRUCTURE PIPELINE we have finalized the infrastructure part with building our pipeline for it.

Now we are going further and start the web api for our notification application environment. We will build the web api in .net core. The web api provides two endpoints. One for creating a message and another for getting all messages. This is sufficient for our example. Furthermore we implementing the use of azure storage table, event hubs, application insights and key vaults.

Yes – I repeat myself, but all the code here is not really complete production ready (error handling, retries, tests, etc.). Maybe I will put some more features (if there is anyone interested in) to all parts of this application, when we are ready with our base version. But our base versions has already a lot of stuff in there, so lets start…

Prerequisites

We only need an editor or development environment for .net and the .net core 3.1 framework for creating a .net core application (But I think this is obvious!). And we need the “Common lib” for our .net projects which will be described below.

Common lib

We need the common lib for this part as well as for our workers (next parts!) which should handle the sent notifications. The common lib source can be downloaded/cloned from the feature/part2 branch and put it next to the infrastructure folder. I will not list all the code here, but I will give a short overview about the content and describe the folders below.

Data

In this folder is the notification entity located which are saving in a azure storage table. For this there is also a repository, which take the job for communicate with storage table. (Please read the code for getting more information how this work in detail and or visit https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-table-dotnet – and do not be confused that we are using the cosmos db api. This api is working with azure storage table.)

Extensions

One extension is to register to application insights and the other one for using the key vaults where we get later our secrets from. The key vault credentials will be pushed via environment variables (but this is part of the next part – 🙂).

Protobuf/Messages

The protobuf folder contains the notification message which we will be used to send/receive to/from our eventhub. I choose to send the message via this binary format. The messages folder contains the C# version of the message (which we will use in our code). If you take a look at the “Notifier.Common.csproj” fill you will find an item group which take this generation job (for this the gprc tool will be used).

Settings

Here are all settings defined as objects, which we will use in our needed .net projects.

WebApi

Again we should here create first a repository for the web api where we can push our code for creating the pipelines etc. in the next part. So let’s create an azure devops repository named “WebApi” in our “Infrastructure” project and clone this next to the “Infrastructure” and “Common” folders. The complete sourcecode can be also downloaded/cloned here.

Base Setup

Now create a .net core console project and name it (incl. the solution) “Notifier.WebApi”. We start by editing the “csproj” file. So replace/edit your contents with the following.

One interesting thing in the first property group is the “UserSecretsId”. So yes we use for local development the user secrets feature. So no secrets has to be in the repository. (The user secret will be created when you right click for the first time the “project -> manage user secrets”. Here we will do it directly in the project file and a good thing is to add the application name to the secret. Else it is very hard find it on your computer.)

The next item group is obvious. The “appsettings.json” which we will create very soon!

Then we have some nuget packages we will need for our web api and last but not least including the common lib as a project reference (make sure the path is right in your environment). A better approach would be to add the common lib as a git submodule or nuget package, but for now this is ok here.

It is time to create the “appsettings.json” file in the project root. Please put the content below into that file.

First we configure the log level for our logging. Then we see settings for our azure resources. These are secrets, so we will define them in our user secrets file later. And at last the core settings which is for our later angular frontend to access the the web api without cors issues.

Let’s go to our user secrets file. For this right click the project and select “Manage User Secrets”. If the file does not open (sometimes with older .net core versions I had the issue) you could do it by using the .net core cli or simply open the file located in “C:\Users\{YOUR_USER}\AppData\Roaming\Microsoft\UserSecrets\notifier-webapi-6fd34aeb-1b78-4492-86dd-a5aa00ce38cd” then put the following in there and find your secrets in your azure portal.

We use here the secrets from our acceptance environment. Here can you find your secrets…

  • Application Insights – Instrumentation Key: select notifier-application-insights-acc resource -> Overview and find the key on the top right.
  • Storage Table – Connection String: select notifierstoreacc resource -> Access keys and then copy the primary connection string.
  • Event Hubs – Connection String: select eventhubs-acc -> Event Hubs -> notifications -> Shared access policies -> send and copy the primary connection string.

Implementation

We start by directly implementing the functionality of the api. Later we wire this together when we setup the “Program.cs” and “Startup.cs”. we do this in this order, because else we have to jump between files and/or have to deal with errors because the things we want to wire are not existent at this time…

So let’s start by creating the model for the notification response. Please create a folder “Models” in the root project directory and create a class named “NotificationModel.cs” and put the following in to it.

The model only contains a message and a timestamp. So let’s go further with the services. For this create a folder named “Services” and create the following in files in there:

Above the service interface (“INotificationService”) with two simple methods in there. And now the implementation (“NotificationService”):

The constructor takes arguments for the logger, eventhub settings (object come from the common lib) and the repository which is also located in the common lib. With this we have all to start here. The “CreateAndSendAsync” does exactly what it is called. First it creates the entity and save it into the table and second it sends to the event hub. The functionality is split into two private methods which makes it more cleaner and better to read. Please check the private methods and the common lib functionality for further information how the event hubs and storage table is used here. (This is a very simple implementation herem without retries etc.)

Now we are ready to create the controller which defines our endpoints. So we start again with creating a folder “Controllers” and create a class named “NotificationController.as” in there and put the following code into it.

We inject the notification service here to let the service do our work. The controller creates the endpoint and format the response for our two methods. So we created here the following endpoints:

  • GET /api/notifications – returns all notifications
  • POST /api/notifications – create, save and send the notification

This is all we need for the logic! Now we need to wire this together…

Wiring the Parts

We start with the “Program.cs” where the entry point of the application is. Please open that file and replace the content with the following.

We start creating the host when the main function is called. At first we configuring the app by calling “ConfigureAppConfiguration”. We add the appsettings.json, environment variables and commandline arguments to our configuration. The we add (or try to add) the user secrets (which is the case in local development). Then we add (or try to add) the key vault (which is the case when we pass the credentials for it via environment variables – but we will discuss this in the next chapter). All the secrets will be replaced by user secrets or key vault. Next we configure our logging. First we register our console logger and second to log in application insights (which results in traces there). And in the last step we configure our web server where we will use “Kestrel” and call our web server startup class “Startup.cs” which contains the following.

Here we will do some startup stuff, but the main focus should be how configure our services. In line 45 we start configuring our app settings, so we can inject them with the IOptions<T> interface in our services, etc. Then we add the repository, and the notification service to our di context. You will find some other basic configuration here, which I will not describe here in detail.

Test

If we have all done here correct, you could run the application locally and test the endpoints. You could use postman or like me the the REST Client (for visual studio code plugin), which is quiet cool, because I can code my requests here and versioning them, etc. Following the requests:

So and if you have created some messages and get them you could check application insights on azure portal and view for example the logs (notifier-application-insights-acc -> Logs -> traces). Or check the application map, which should should show the connection between the components. At this time we can see that our web api sends to event hub and calls to to the azure table.

Conclusion

We have created a .net core web api here which cares about secrets and uses diverse azure resources like event hubs, application insights, key vaults and azure tables. We can now create, persist and read/receive notifications.

Preview

In the next PART 2.1, we will bring the web api to our acceptance stage running in docker and the kubernetes cluster. And this we want to integrate and automate in the azure pipelines.